Semi-supervised Distance Metric Learning for Visual Object Classification
نویسندگان
چکیده
This paper describes a semi-supervised distance metric learning algorithm which uses pairwise equivalence (similarity and dissimilarity) constraints to discover the desired groups within high-dimensional data. As opposed to the traditional full rank distance metric learning algorithms, the proposed method can learn nonsquare projection matrices that yield low rank distance metrics. This brings additional benefits such as visualization of data samples and reducing the storage cost, and it is more robust to overfitting since the number of estimated parameters is greatly reduced. Our method works in both the input and kernel induced-feature space, and the distance metric is found by a gradient descent procedure that involves an eigen-decomposition in each step. Experimental results on high-dimensional visual object classification problems show that the computed distance metric improves the performance of the subsequent clustering algorithm.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملSemi-supervised Distance Metric Learning in High-Dimensional Spaces by Using Equivalence Constraints
This paper introduces a semi-supervised distance metric learning algorithm which uses pairwise equivalence (similarity and dissimilarity) constraints to discover the desired groups within high-dimensional data. In contrast to the traditional full rank distance metric learning algorithms, the proposed method can learn nonsquare projection matrices that yield low rank distance metrics. This bring...
متن کاملSemi-supervised discriminative common vector method for computer vision applications
We introduce a new algorithm for distance metric learning which uses pairwise similarity (equivalence) and dissimilarity constraints. The method is adapted to the high-dimensional feature spaces that occur in many computer vision applications. It first projects the data onto the subspace orthogonal to the linear span of the difference vectors of the similar sample pairs. Similar samples thus ha...
متن کاملSome Research Problems in Metric Learning and Manifold Learning
In the past few years, metric learning, semi-supervised learning, and manifold learning methods have aroused a great deal of interest in the machine learning community. Many machine learning and pattern recognition algorithms rely on a distance metric. Instead of choosing the metric manually, a promising approach is to learn the metric from data automatically. Besides some early work on metric ...
متن کاملMulticlass Semi-supervised Boosting Using Different Distance Metrics
The goal of this thesis project is to build an effective multiclass classifier which can be trained with a small amount of labeled data and a large pool of unlabeled data by applying semi-supervised learning in a boosting framework. Boosting refers to a general method of producing a very accurate classifier by combining rough and moderately inaccurate classifiers. It has attracted a significant...
متن کامل